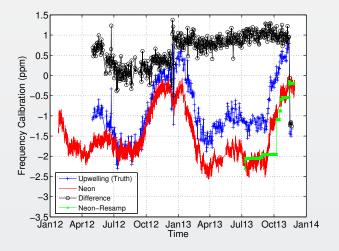
CrIS Spectral Calibration

Overview

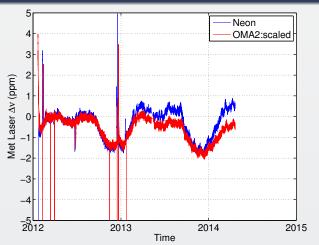
L. Larrabee Strow, Howard Motteler, Chris Hepplewhite, Sergio De-Souza Machado, and Breno Imbiriba


> Department of Physics, JCET University of Maryland Baltimore County (UMBC)

STAR JPSS Science Team Annual Meeting May 2014 College Park, MD

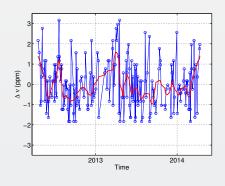
Overview

- Spectral calibration performance: Neon stability
- High-resolution spectral improvements: Period Sinc basis
- Full spectral comparison with AIRS via SNOs


Absolute ν Calibration: IDPS SDRs

- Data using IDPS long-wave SDRs; Very few updates due to 2 ppm threshold
- SDR's exhibit ~3 ppm variability
- Correct operation of CMO generation started in Nov. 2013

2-Year Neon Calibration Record


Metrology Laser Wavelength Follows Thermal Environment?

- Question: Is any of this drift due to the Neon lamp? Original plans were to update the Neon calibration via up-welling radiances 1/month.
- Difficult to use IDPS SDR record for this since Neon cal used in IDPS uncertain until Nov. 2013.

2-Year Neon Calibration from CCAST

CCAST: UW/UMBC SDR Testbed Code

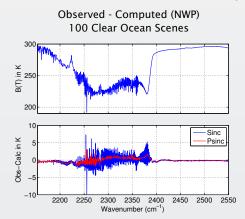
- Reprocess 2 years of SDRs with CCAST using metrology laser that follows Neon calibration exactly.
- Normal v-cal compares observed to NWP simulated radiances: not yet finished.
- Here: compare (via cross-correlation) April 2012 scene radiances to time series of a small clear subset of CCAST output.
- Regression of drift over 2 years: -0.07 ppm ± 0.54 ppm
- Excellent long-term stability

This approach introduces noise, we will soon finish matching 2-years of CCAST output to NWP (ECMWF) and will have a much lower noise Neon calibration to determine if it is drifting and needs any updates.

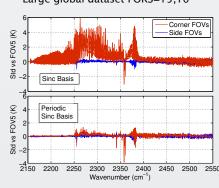
The results shown here suggest no long-term drifts, but possibly a small seasonal drift with solar heating of the instrument.

Overview

CCAST SDR Cal Approach for This Work

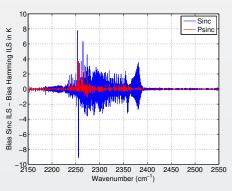

$$r_{OBS} = F \cdot r_{ICT} \cdot f \cdot SA^{-1} \cdot f \cdot \frac{ES - SP}{IT - SP}$$

- r_{OBS} is calibrated radiance at the user grid
- F is Fourier interpolation from sensor to user grid
- f is a raised-cosine bandpass filter
- r_{ICT} is expected ICT radiance at the sensor grid
- SA⁻¹ is the inverse of the ILS matrix
- ES is earth-scene count spectra
- IT is calibration target count spectra
- SP is space-look count spectra

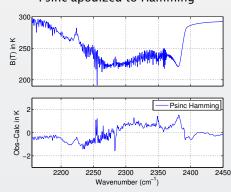

Periodic Sinc Applied to High-Resolution Spectra

- Periodic sinc (psinc) is the correct basis for the instrument line shape (ILS)
- Thanks to Dan Mooney, see next talk
- IDPS and previously CCAST used sinc, not psinc

Two metrics for spectral performance

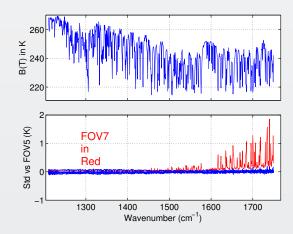


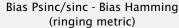
Standard Deviation of FOV5-FOV*n* Large global dataset FORS=15,16

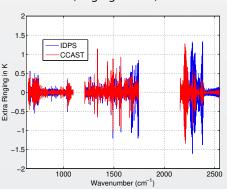


Periodic Sinc: Details

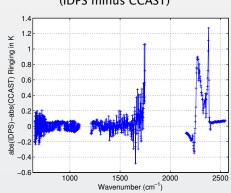
Bias Psinc/sinc - Bias Hamming A clean metric for excess ringing


Observed - Computed (NWP) Psinc apodized to Hamming


- This is a major improvement to the high-resolution short-wave data
- Periodic sinc mostly improves corner FOVS, where the self-apodization correction is largest, SA matrix is more poorly conditioned.
- Should help improve absolute spectral calibration once CrlS is in high-resolution mode

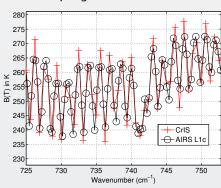

FOV7 Non-Linearity in High-Resolution Data

- High-res mid-wave water vapor line centers very cold
- Below: Std. Dev. of FOV5-FOVn for global data set. IDPS non-linear coefficients (Feb. 20, 2014 +).
- FOV7 non-linearity may need a more refined correction

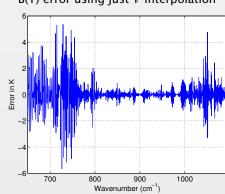


Periodic Sinc Applied to Normal Resolution SDRs

Difference of abs(ringing metric) (IDPS minus CCAST)


- Periodic sinc only clearly better at high wavenumber end of mid-wave band and most of short-wave band.
- Other contributors to non-sinc ringing dominate

CrIS/AIRS SNOs using Native CrIS ILS


- Intercalibration of AIRS and CrIS can only be done with L1b data in winow regions.
- ILS (Instrument Line Shape) differences cause large (4+K) differences between AIRS and CrIS for
- We convert AIRS (L1c) radiances using a deconvolution, reconvolution approach.
- The AIRS→CrIS data may provide the best approach for building a seamless AIRS + CrIS L2 time series.

AIRS L1c: Mismatch due to ILS Differences

Sampling of AIRS vs CrIS ILS

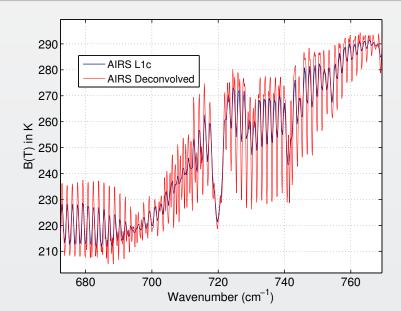
B(T) error using just ν interpolation

AIRS → CrIS Conversion

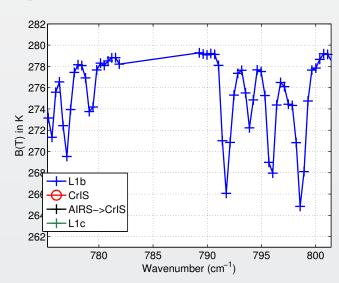
This topic is beyond the scope of this talk, so just a summary.

Basic methodology

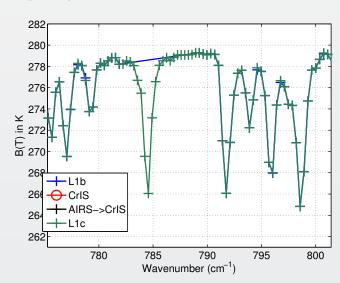
Let S_a be a matrix whose rows are AIRS SRFs on a 0.1 cm⁻¹ grid, c AIRS channel radiances, and r radiances on the same 0.1 cm⁻¹ grid. Then we can write

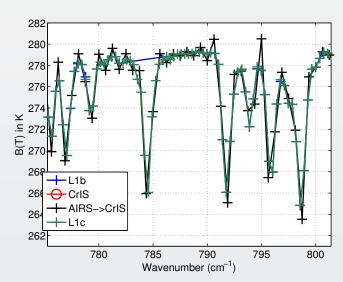

$$c = S_a r$$
,

expressing the channel radiances as the convolution of observed radiance. In practice we have c and don't know r, but we can approximate it by taking the pseudo-inverse S_a^{-1} and applying it to c,

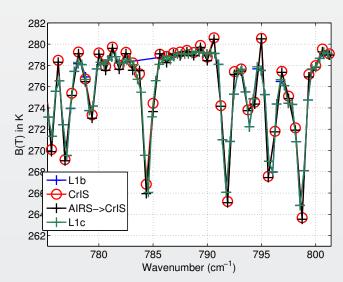

$$r=S_a^{-1}c.$$

This is the deconvolution. This regularly spaced r can then be convolved to CrIS radiances at the user grid, taking into account band differences. The key in practice is that the L1c channel set gives a relatively well-conditioned S_a .

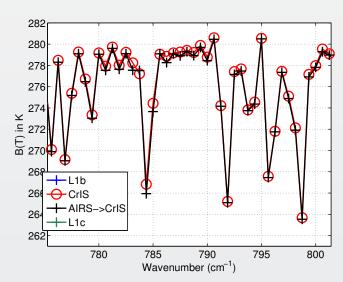

Example of De-convolved AIRS Spectrum


L1b

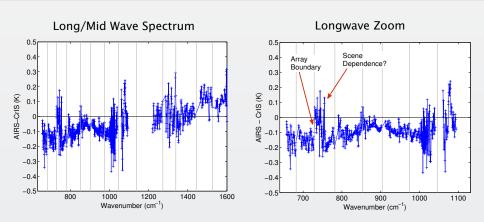
L1b + L1c



L1b + L1c + L1c→CrIS



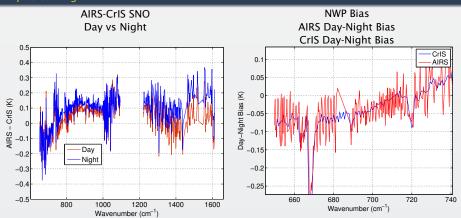
$$L1b + L1c + L1c \rightarrow CrIS + CrIS$$


Overview

Overview

Full Spectrum Differences (Pre-Feb. 2014 Non-Linearity) Hamming Apodization

0.2K "ringing" may be due to lack of frequency calibration

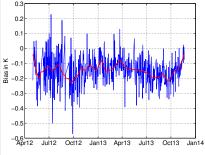

The standard error is extremely small. $\pm 50^{\circ}$ latitude SNOs, 2 million+ samples.

 Overview
 Neon Cal
 High-Res + Psinc
 All-Spectral SNOs
 L1 c
 SNO Comparisons

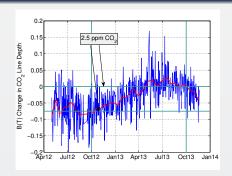
 0
 000
 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</t

Full Spectrum Differences (Post-Feb. 2014 Non-Linearity)

Day versus Night



- Differences between CrIS vs AIRS day/night larger than statistical errors
- Thermal issues on one of these instruments?
- NWP day vs night biases similar for AIRS, CrIS in 650-700 cm⁻¹ region, but very different for water vapor due to sampling differences
- AIRS "ringing" due to me not doing AIRS frequency calibration before forming SNOs. TBD.


Overview Neon Cal High-Res + Psinc All-Spectral SNOs SNO Comparisons 0000

CrlS Radiometric Stability Relative to SST, CO2

0.3 0.2

- Tropical ocean clear
- 1-Year differences far below 0.1K. Red curve is smoothed time series.

- CO₂ from ECMWF bias (791.5 cm^{-1}) - 0.27*bias(790 cm⁻¹).
- Second term removes any SST, H₂O variability.
- Oct 2012 through Oct 2013 shows 2.5 ppm growth rate (0.06K).

Conclusions

- CrIS spectral calibration continues to be stable and accurate
- UMBC will complete full analysis of Neon stability in the near future using CCAST
- CrlS high-resolution short-wave SDRs improved using period sinc basis function for apodization corrections.
- FOV-7 improvements needed for high-spectral resolution mode.
- AIRS/CrIS SNOs exhibit $\sim \pm 0.1$ K agreement on a channel-by-channel basis with AIRS (~ 1080 channels).
- AIRS/CrIS comparisons will improve once AIRS SNOs are frequency calibration (by UMBC).
- AIRS → CrIS conversion will make a combined AIRS, CrIS radiance climate data set possible, now at 11+ years length.